ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься? Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k? Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности. Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1. Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного? По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола. Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав? На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.) Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия: Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число? |
Страница: 1 [Всего задач: 5]
Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число?
На сторонах треугольника ABC построены три подобных треугольника: YBA и ZAC – во внешнюю сторону, а XBC – внутрь (соответственные вершины перечисляются в одинаковом порядке). Докажите, что AYXZ – параллелограмм.
Наименьшее общее кратное натуральных чисел a, b будем обозначать [a, b]. Пусть натуральное число n таково, что [n, n + 1] > [n, n + 2] > ... > [n, n + 35].
На шахматной доске стоят восемь не бьющих друг друга ладей. Докажите, что можно каждую из них передвинуть ходом коня так, что они по-прежнему не будут бить друг друга. (Все восемь ладей передвигаются "одновременно", то есть если, например, две ладьи бьют друг друга ходом коня, то их можно поменять местами.)
Космический аппарат сел на неподвижный астероид, про который известно только, что он представляет собой шар или куб. Аппарат проехал по поверхности астероида в точку, симметричную начальной относительно центра астероида. Всё это время он непрерывно передавал свои пространственные координаты на космическую станцию, и там точно определили трёхмерную траекторию аппарата. Может ли этого оказаться недостаточно, чтобы отличить, по кубу или по шару ездил аппарат?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке