ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось n человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.
  "Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно, буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".
  Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно  1 + ½ + ⅓ + ... + 1/n.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65785

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9,10,11

Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?

Прислать комментарий     Решение

Задача 65786

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 4-
Классы: 8,9,10,11

Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64. На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями.

Прислать комментарий     Решение

Задача 65788

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 4-
Классы: 8,9,10,11

  Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось n человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.
  "Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно, буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".
  Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно  1 + ½ + ⅓ + ... + 1/n.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .