ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

Вниз   Решение


На прямой отмечено четыре точки и ещё одна точка отмечена вне прямой. Всего существует шесть треугольников с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 65860  (#1)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Взяли пять натуральных чисел и для каждых двух записали их сумму.
Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?

Прислать комментарий     Решение

Задача 65861  (#2)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10

На прямой отмечено четыре точки и ещё одна точка отмечена вне прямой. Всего существует шесть треугольников с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?

Прислать комментарий     Решение

Задача 65862  (#3)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

На окружности отмечено 100 точек. Эти точки нумеруются числами от 1 до 100 в некотором порядке.
  а) Докажите, что при любой нумерации точки можно разбить на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были нечётны.
  б) Верно ли, что при любой нумерации можно разбить точки на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были чётны?

Прислать комментарий     Решение

Задача 65863  (#4)

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10

Даны параллелограмм ABCD и такая точка K, что  AK = BD.  Точка M – середина CK. Докажите, что  ∠BMD = 90°.

Прислать комментарий     Решение

Задача 65864  (#5)

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наименьшее количество ягод может оставить медвежатам лиса?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .