ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружности $\omega_1$ и $\omega_2$ пересекаются в точках $P$ и $Q$. Пусть $O$ – точка пересечения общих внешних касательных к $\omega_1$ и $\omega_2$. Прямая, проходящая через точку $O$, пересекает $\omega_1$ и $\omega_2$ в точках $A$ и $B$ соответственно, так, что эти две точки лежат по одну сторону от $PQ$. Прямая $PA$ повторно пересекает $\omega_2$ в точке $C$, а прямая $QB$ повторно пересекает $\omega_1$ в точке $D$. Докажите, что $O$, $C$ и $D$ лежат на одной прямой. Решение |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|