ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Tran Quang Hung

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 66955

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Tran Quang Hung

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .