|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В четырёхугольнике ABCD AB = BC = CD = 1, AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным. а) Существует ли бесконечная последовательность натуральных чисел, обладающая следующим свойством: ни одно из этих чисел не делится на другое, но среди каждых трёх чисел можно выбрать два, сумма которых делится на третье? б) Если нет, то как много чисел может быть в наборе, обладающем таким свойством? в) Решите ту же задачу при дополнительном условии: в набор разрешено включать только нечётные числа. Вот пример такого набора из четырёх чисел: 3, 5, 7, 107. Здесь среди трёх чисел 3, 5, 7 сумма 5 + 7 делится на 3; в тройке 5, 7, 107 сумма 107 + 5 делится на 7; в тройке 3, 7, 107 сумма 7 + 107 делится на 3; наконец, в тройке 3, 5, 107 сумма 3 + 107 делится на 5. а) Докажите, что в таблице б) В каждой ли строке (кроме первых двух) встречается число, кратное 3? |
Страница: 1 [Всего задач: 1]
а) Докажите, что в таблице б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?
Страница: 1 [Всего задач: 1] |
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|