Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Вниз   Решение


Даны два треугольника ABC и A1B1C1. Перпендикуляры, опущенные из точек A, B, C на прямые B1C1, C1A1, A1B1 пересекаются в одной точке. Докажите, что тогда перпендикуляры, опущенные из точек A1, B1, C1 на прямые BC, CA, AB тоже пересекаются в одной точке (Штейнер).

ВверхВниз   Решение


Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

ВверхВниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

ВверхВниз   Решение


Найдите все натуральные  n > 1,  для которых  n³ – 3  делится на  n – 1.

ВверхВниз   Решение


Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость.

ВверхВниз   Решение


а) Стороны угла с вершиной C касаются окружности в точках A и B. Из точки P, лежащей на окружности, опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA и AB. Докажите, что  PC12 = PA1 . PB1 и PA1 : PB1 = PB2 : PA2.
б) Из произвольной точки O вписанной окружности треугольника ABC опущены перпендикуляры  OA', OB', OC' на стороны треугольника ABC и перпендикуляры  OA'', OB'', OC'' на стороны треугольника с вершинами в точках касания. Докажите, что  OA' . OB' . OC' = OA'' . OB'' . OC''.

ВверхВниз   Решение


На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 76445

Темы:   [ Разные задачи на разрезания ]
[ Сочетания и размещения ]
[ Многоугольники (прочее) ]
Сложность: 4
Классы: 8,9

На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .