|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке C пересекает прямую AB в точке D. Пусть I – центр вписанной окружности, треугольника ABC. Прямые AI и BI пересекают биссектрису угла CDB в точках Q и P соответственно. Пусть M – середина отрезка PQ. Докажите, что прямая MI проходит через середину дуги ACB окружности ω. {a1, a2, ..., a20} — набор целых положительных чисел. Строим новый набор чисел {b0, b1, b2, ...} по следующему правилу: b0 — количество чисел исходного набора, которые больше 0, b1 — количество чисел исходного набора, которые больше 1, b2 — количество чисел исходного набора, которые больше 2, и т.д., пока не пойдут нули. Докажите, что сумма всех чисел исходного набора равна сумме всех чисел нового набора. Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9. |
Страница: 1 [Всего задач: 1]
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Страница: 1 [Всего задач: 1] |
||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|