Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

Вниз   Решение


В саду у Ани и Вити росло 2006 розовых кустов. Витя полил половину всех кустов, и Аня полила половину всех кустов. При этом оказалось, что ровно три куста, самые красивые, были политы и Аней, и Витей. Сколько розовых кустов остались не политыми?

ВверхВниз   Решение


Автор: Маресин В.

Один из простейших многоклеточных организмов — водоросль вольвокс — представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток на 12 больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?

ВверхВниз   Решение


Биссектрисы $AI$ и $CI$ пересекают описанную окружность треугольника $ABC$ в точках $A_1$, $C_1$ соответственно. Описанная окружность треугольника $AIC_1$ пересекает сторону $AB$ в точке $C_0$; аналогично определим $A_0$. Докажите, что точки $A_0,$ $A_1$, $C_0$, $C_1$ лежат на одной прямой.

ВверхВниз   Решение


Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

ВверхВниз   Решение


Автор: Панов М.Ю.

Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.

ВверхВниз   Решение


Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 77946

Тема:   [ Неравенства с модулями ]
Сложность: 3-
Классы: 10,11

Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.
Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .