ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Докажите, что при n = 2k среди полученных фигур не более 2k - 1 углов.
б) Может ли при n = 100 среди полученных фигур быть только три угла?

Вниз   Решение


Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78247

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10

Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .