|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны. Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру a ≠ 0 (все цифры его не меньше a) и при этом получится (x − a)². |
Страница: 1 [Всего задач: 1]
Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру a ≠ 0 (все цифры его не меньше a) и при этом получится (x − a)².
Страница: 1 [Всего задач: 1] |
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|