ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78698  (#1)

Темы:   [ Десятичная система счисления ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 2+
Классы: 10

Найти все натуральные числа x, обладающие следующим свойством: из каждой цифры числа x можно вычесть одну и ту же цифру  a ≠ 0  (все цифры его не меньше a) и при этом получится  (xa)².

Прислать комментарий     Решение

Задача 78699  (#2)

Темы:   [ Раскраски ]
[ Индукция в геометрии ]
Сложность: 3
Классы: 10

Остров Толпыго имеет форму многоугольника. На нём расположено несколько стран, каждая из которых имеет форму треугольника, причём каждые две граничащие страны имеют целую общую сторону (т.е. вершина одного треугольника не лежит на стороне другого). Доказать, что карту этого острова можно так раскрасить тремя красками, чтобы каждая страна была закрашена одним цветом и любые две соседние страны были закрашениы в разные цвета.
Прислать комментарий     Решение


Задача 78700  (#3)

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10

Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна?

Прислать комментарий     Решение

Задача 78692  (#4)

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Прислать комментарий     Решение

Задача 78701  (#5)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Инверсия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

В государстве царя Додона расположено 500 городов, каждый из которых имеет форму правильной 37-угольной звезды, в вершинах которой находятся башни. Додон решил обнести их выпуклой стеной так, чтобы каждый отрезок стены соединял две башни. Доказать, что стена будет состоять не менее чем из 37 отрезков. (Если несколько отрезков лежат на одной прямой, то они считаются за один.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .