Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

Вниз   Решение


Даны две концентрические окружности $\Omega$ и $\omega$. Хорда $AD$ окружности $\Omega$ касается $\omega$. Внутри меньшего сегмента $AD$ круга с границей $\Omega$ взята произвольная точка $P$. Касательные из $P$ к окружности $\omega$ пересекают большую дугу AD окружности $\Omega$ в точках $B$ и $C$. Отрезки $BD$ и $AC$ пересекаются в точке $Q$. Докажите, что отрезок $PQ$ делит отрезок $AD$ на две равные части.

ВверхВниз   Решение


Белая ладья преследует чёрного коня на доске 3×1969 клеток (они ходят по очереди по обычным правилам). Как должна играть ладья, чтобы взять коня? Первый ход делают белые.

ВверхВниз   Решение


В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?

ВверхВниз   Решение


Имеется 57 деревянных правильных 57-угольников, прибитых к полу. Всю эту систему мы обтягиваем веревкой. Натянутая веревка будет ограничивать некоторый многоугольник. Доказать, что у него более 56 вершин.

ВверхВниз   Решение


Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.

ВверхВниз   Решение


Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

ВверхВниз   Решение


Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
  б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.

ВверхВниз   Решение


Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.

ВверхВниз   Решение


Докажите, что если K чётно, то числа от 1 до  K – 1  можно выписать в таком порядке, что сумма никаких нескольких подряд стоящих чисел не будет делиться на K.

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.

ВверхВниз   Решение


На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.)

ВверхВниз   Решение


Одна под другой выписаны 2n–1 различных последовательностей из нулей и единиц длины n. Известно, что для любых трёх из выписанных последовательностей найдётся такой номер p, что в p-м разряде у всех трёх стоит 1. Доказать, что в некотором разряде у всех выписанных последовательностей стоит 1 и такой разряд только один.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78718

Темы:   [ Числовые таблицы и их свойства ]
[ Задачи с ограничениями ]
[ Разбиения на пары и группы; биекции ]
[ Правило произведения ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4
Классы: 10

Одна под другой выписаны 2n–1 различных последовательностей из нулей и единиц длины n. Известно, что для любых трёх из выписанных последовательностей найдётся такой номер p, что в p-м разряде у всех трёх стоит 1. Доказать, что в некотором разряде у всех выписанных последовательностей стоит 1 и такой разряд только один.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .