ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.

   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 78834  (#4)

Тема:   [ Квадратные корни (прочее) ]
Сложность: 5
Классы: 10,11

Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству

(a + b$\displaystyle \sqrt{2}$)2n + (c + d$\displaystyle \sqrt{2}$)2n = 5 + 4$\displaystyle \sqrt{2}$

(где n — натуральное число)?
Прислать комментарий     Решение

Задача 78835  (#5)

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 9,10

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .