ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что если для чисел p1, p2, q1 и q2 выполнено неравенство  (q1q2)² + (p1p2)(p1q2p2q1) < 0,  то квадратные трёхчлены
x² + p1x + q1  и  x² + p2x + q2  имеют вещественные корни, причём между двумя корнями каждого из них лежит корень другого.

Вниз   Решение


Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79377

Темы:   [ Выпуклые многоугольники ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .