ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 79515  (#1)

Темы:   [ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Даны 7 различных цифр. Доказать, что для любого натурального числа n найдётся пара данных цифр, сумма которых оканчивается той же цифрой, что и число.
Прислать комментарий     Решение


Задача 79517  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Найти такие 50 натуральных чисел, что ни одно из них не делится на другое, а произведение каждых двух из них делится на любое из оставшихся чисел.

Прислать комментарий     Решение

Задача 79518  (#4)

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .