Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В параллелограмме ABCD диагональ AC больше диагонали BDM — такая точка диагонали AC, что четырехугольник BCDM вписанный. Докажите, что прямая BD является общей касательной к описанным окружностям треугольников ABM и ADM.

Вниз   Решение


Докажите неравенство для положительных значений переменных:   a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4).

ВверхВниз   Решение


Через каждую вершину треугольника проведены две прямые, делящие противоположную сторону треугольника на три равные части. Докажите, что диагонали, соединяющие противоположные вершины шестиугольника, образованного этими прямыми, пересекаются в одной точке.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   a³b + b³c + c³aabc(a + b + c).

ВверхВниз   Решение


На продолжении хорды KL окружности с центром O взята точка A, и из нее проведены касательные AP и AQM — середина отрезка PQ. Докажите, что  $ \angle$MKO = $ \angle$MLO.

ВверхВниз   Решение


Докажите неравенство   3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3)  при  a1a2a3b1b2b3.

ВверхВниз   Решение


Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

ВверхВниз   Решение


Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.

ВверхВниз   Решение


Пусть $I$ – центр вписанной окружности неравнобедренного треугольника $ABC$. Докажите, что существует единственная пара точек $M$, $N$, лежащих соответственно на сторонах $AC$, $BC$, такая, что $\angle AIM = \angle BIN$ и $MN \parallel AB$.

ВверхВниз   Решение


(Продолжение задачи 32796)
  Стоя в углу, Клайв разобрал свои наручные часы, чтобы посмотреть, как они устроены. Собирая их обратно, он произвольно надел часовую и минутную стрелки. Сможет ли он так повернуть циферблат, чтобы хоть раз в сутки часы показывали правильное время (часы при этом еще не заведены)?

ВверхВниз   Решение


Автор: Хилько Д.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.

ВверхВниз   Решение


На Солнечном острове живет 20 белых и 25 чёрных хамелеонов (хамелеоны – это животные, умеющие менять свой цвет). При встрече оба хамелеона меняют свой цвет на противоположный. Могут ли все хамелеоны окраситься в один цвет?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]      



Задача 79663

Темы:   [ Ребусы ]
[ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения.
Прислать комментарий     Решение


Задача 79664

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

В корзине лежат 30 рыжиков и груздей. Среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов имеется хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?
Прислать комментарий     Решение


Задача 88284

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6,7

Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц?
Прислать комментарий     Решение


Задача 88285

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7

После кризиса все цены поднялись на 25%. На сколько процентов меньше товаров можно купить на ту же зарплату?

Прислать комментарий     Решение

Задача 88286

Темы:   [ Текстовые задачи (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

На Солнечном острове живет 20 белых и 25 чёрных хамелеонов (хамелеоны – это животные, умеющие менять свой цвет). При встрече оба хамелеона меняют свой цвет на противоположный. Могут ли все хамелеоны окраситься в один цвет?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .