ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

Вниз   Решение


Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д – множество точек, принадлежащих тем диагоналям многоугольника, которые не вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри, частью на контуре). Концы этих диагоналей тоже включаются в Д. Докажите, что любые две точки из Д можно соединить ломаной, целиком принадлежащей Д.

ВверхВниз   Решение


Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

ВверхВниз   Решение


К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.

ВверхВниз   Решение


Докажите, что последние цифры чисел nn (n – натуральное) образуют периодическую последовательность.

ВверхВниз   Решение


Множество чисел А заданы условиями:
а) 1 принадлежит А
б) если k принадлежит А, то 2*k+1 принадлежит А и 3*k принадлежит А, и других чисел множество А не содержит.

Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,...

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 98810  (#1)

 [Рюкзак]
Тема:   [ Динамическое программирование: классические задачи ]
Сложность: 3

Из заданных n предметов выбрать такие , чтобы их суммарный вес был менее 30 кг, а стоимость - наибольшей. Напечатать суммарную стоимость выбранных предметов. Точнее- заданы два массива положительных чисел А[1:n] и В[1:n]. Выбрать такие попарно различные числа i1, i2,... ik, чтобы сумма

А[i1] + A[i2] +...+ A[ik] < 30, а сумма

B[i1] + B[i2] +...+ B[ik] = max была максимальной. Напечатать только величину max

Замечание. Можно предполагать , что предметы уже расположены в порядке возрастания или убывания веса А[i], стоимости В[i], цены В[i] / A[i] или какого-либо иного признака.

Прислать комментарий     Решение

Задача 98811  (#2)

 [Полукратные]
Тема:   [ Прочие задачи на сообразительность ]
Сложность: 2

Множество чисел А заданы условиями:
а) 1 принадлежит А
б) если k принадлежит А, то 2*k+1 принадлежит А и 3*k принадлежит А, и других чисел множество А не содержит.

Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,...

Прислать комментарий     Решение

Задача 98813  (#4)

 [Перевертыши]
Тема:   [ Вложенные циклы ]
Сложность: 2+

Задан числовой массив А[1:n]. Найти отрезок массива максимальной длины, в котором первое число равно последнему, второе - предпоследнему и т.д. Напечатать длину этого отрезка.

Прислать комментарий     Решение

Задача 98814  (#5)

 [Индексы порядка]
Тема:   [ Сортировка ]
Сложность: 2

Задан числовой массив А[1:n].Найти и отпечатать такую перестановку i1 , i2 ,..., in чисел1,2,...,n, чтобы

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .