ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 2 >> [Всего задач: 7]
На гранях двух разных правильных тетраэдров M и N написаны числа M1, M2, M3, M4 и N1, N2, N3, N4 в порядке, указанном на рис.1.3. Можно ли совместить тетраэдры так, чтобы на совпавших гранях оказались написаны одинаковые числа? Напечатать ДА или НЕТ.
По окружности написаны 12 чисел а1, а2, ..., а12. Если их списать, начиная с номера k, то получится вектор xk: xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+j<аp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален.
Множество чисел А заданы условиями: Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,...
Задан массив натуральных чисел P[1:n]. Найти минимальное натуральное число, не представимое суммой никаких элементов массива P. Сумма может состоять и из одного слагаемого, но каждый элемент массива может входить в неё только один раз.
Метрополитен города Глупова состоит из единственной одноколейной линии. В
нулевой момент времени с начальной и конечной станций этой линии навстречу
друг другу начинают двигаться два поезда. Их движение подчиняется
следующим правилам.
Требуется определить, где и когда поезда столкнутся. «Где» определяется
расстоянием от начальной станции до места столкновения, «когда» –
временем, когда произойдет столкновение.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке