Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 559]      



Задача 30695  (#009)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3-
Классы: 7,8

На прямой отмечено 10 точек, а на параллельной ей прямой – 11 точек.
Сколько существует  а) треугольников;  б) четырёхугольников с вершинами в этих точках?

Прислать комментарий     Решение

Задача 30696  (#010)

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

Прислать комментарий     Решение

Задача 30697  (#011)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 6,7,8

Сколькими способами можно составить комиссию из трёх человек, выбирая её членов из четырёх супружеских пар, но так, чтобы члены одной семьи не входили в комиссию одновременно?

Прислать комментарий     Решение

Задача 30698  (#012)

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Прислать комментарий     Решение

Задача 30699  (#013)

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно переставить буквы слова "ЭПИГРАФ" так, чтобы и гласные, и согласные шли в алфавитном порядке?

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .