Страница:
<< 1 2 3 4 [Всего задач: 17]
|
|
Сложность: 5 Классы: 9,10,11
|
X и
Y — два выпуклых многоугольника, причём многоугольник
X содержится
внутри
Y. Пусть
S(
X) и
S(
Y) — площади этих многоугольников, а
P(
X) и
P(
Y) — их периметры. Доказать, что
< 2
. .
|
|
Сложность: 5 Классы: 9,10,11
|
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих
рядом, поменять местами. Какое наименьшее число таких перестановок необходимо
сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели
бы в обратном порядке?
Страница:
<< 1 2 3 4 [Всего задач: 17]