ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 35339

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия ]
[ Движение помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.
Прислать комментарий     Решение


Задача 32068

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Раскраски ]
Сложность: 3
Классы: 6,7,8

Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?

Прислать комментарий     Решение

Задача 58107

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

Прислать комментарий     Решение

Задача 65155

Тема:   [ Принцип Дирихле (площадь и объем) ]
Сложность: 3+
Классы: 9,10,11

Ковёр имеет форму квадрата со стороной 275 см. Моль проела в нем четыре дырки. Можно ли гарантированно вырезать из ковра квадратный кусок со стороной 1 м, не содержащий дырок? Дырки считайте точечными.

Прислать комментарий     Решение

Задача 79322

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия помогает решить задачу ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Окружности на сфере ]
Сложность: 4-
Классы: 9,10,11

На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .