|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости задано конечное множество точек. Доказать, что в нём найдётся точка, у которой имеется не более трёх ближайших к ней точек из этого же множества. Герцог Сумматор выбрал некоторые вещественные числа (хотя бы одно, но, возможно, бесконечное количество). То же самое сделал герцог Вычитатор. Оказалось, что если $x$ является числом Сумматора, а $y$ является числом Вычитатора, то $x+y$ является числом Сумматора, а $y - x$ является числом Вычитатора. Обязательно ли все числа Сумматора являются числами Вычитатора? |
Страница: << 1 2 [Всего задач: 7]
В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.
В квадрате клетчатой бумаги 10×10 нужно расставить один корабль
1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут
прилегать к границам квадрата. Докажите, что
Страница: << 1 2 [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|