Страница: 1 [Всего задач: 4]
Четырёхугольник $ABCD$ выпуклый, его стороны $AB$ и $CD$ параллельны. Известно, что углы $DAC$ и $ABD$ равны, а также углы $CAB$ и $DBC$ равны. Обязательно ли $ABCD$ – квадрат?
|
|
Сложность: 3 Классы: 5,6,7,8
|
Назовём натуральное число $n$
интересным, если $n$ и $n+2023$ – палиндромы, то есть числа, одинаково читающееся слева направо и справа налево. Найдите наименьшее и наибольшее интересные числа.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Высоты параллелограмма больше 1. Обязательно ли в него можно поместить единичный квадрат?
Страница: 1 [Всего задач: 4]