ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В гандбольном турнире в один круг (победа – 2 очка, ничья – 1 очко, поражение – 0) приняло участие 16 команд. Все команды набрали разное количество очков, причём команда, занявшая седьмое место, набрала 21 очко. Докажите, что победившая команда хотя бы один раз сыграла вничью.

Вниз   Решение


Для углов α , β , γ справедливо равенство sinα + sinβ + sinγ 2 . Докажите, что cosα + cosβ + cosγ .

ВверхВниз   Решение


Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса.

ВверхВниз   Решение


Диагональ боковой грани правильной треугольной призмы, равная 6, составляет угол 30o с плоскостью другой боковой грани. Найдите объём призмы.

ВверхВниз   Решение


Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.

ВверхВниз   Решение


Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по разные стороны от прямой OA. Найдите угол CAD, если угол AOD равен 110o.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 61044

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9,10

При каких a и b уравнение  x3 + ax + b = 0  имеет три различных решения, составляющих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 61257

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Докажите, что уравнение  x³ + ax² – b = 0,  где a и b вещественные и  b > 0,  имеет один и только один положительный корень.

Прислать комментарий     Решение

Задача 66600

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
Прислать комментарий     Решение


Задача 61045

Темы:   [ Теорема Виета ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 10,11

Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

Прислать комментарий     Решение

Задача 61047

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .