Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]
|
|
Сложность: 4- Классы: 9,10,11
|
Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.
|
|
Сложность: 4- Классы: 9,10,11
|
Прямые, параллельные оси Ox, пересекают график функции y = ax³ + bx² + cx + d: первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть известно, что все корни некоторого уравнения x3 + px2 + qx + r = 0 положительны. Какому
дополнительному условию должны удовлетворять его коэффициенты p, q и r для того, чтобы из отрезков, длины которых равны этим корням, можно было составить треугольник?
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите зависимость между коэффициентами кубического уравнения
ax3 + bx2 + cx + d = 0, если известно, что сумма двух его корней равна произведению этих корней.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Даны такие действительные числа a1 ≤ a2 ≤ a3 и b1 ≤ b2 ≤ b3, что
a1 + a2 + a3 = b1 + b2 + b3, a1a2 + a2a3 + a1a3 = b1b2 + b2b3 + b1b3.
Докажите, что если
a1 ≤
b1, то
a3 ≤
b3.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]