ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 102934

 [Картинная галерея ]
Тема:   [ Прямая и отрезок ]
Сложность: 3

В картинной галерее, имеющей форму N-угольника, расположено M люстр, которые мы будем считать точечными источниками света. Точка стены галереи называется освещенной, если из нее видна хотя бы одна из люстр. Неосвещенным участком будем называть максимальное связное множество точек стены галереи, ни одна из которых не освещена (участок может содержать углы галереи). Напишите программу, определяющую все неосвещенные участки.

Входные данные

Первая строка входного файла содержит два целых числа N и M (1 ≤ N, M ≤ 30). В каждой из следующих N строк записаны координаты очередного угла галереи. Углы перечислены в порядке обхода стены по часовой стрелке. Далее идут M строк, каждая из которых содержит координаты очередной из люстр. Все координаты являются вещественными числами и разделяются пробелом.

Выходные данные

В первую строку выходного файла выведите количество неосвещенных участков S. Каждая из следующих S строк должна содержать описание очередного из участков в виде тройки чисел, разделенных пробелом. Первые два числа определяют координаты начальной точки участка, третье – его длину. (Участок должен продолжаться на указанную длину в направлении обхода стены по часовой стрелке. Никакие два участка не должны иметь общих точек.) Числа, определяющие участок, должны быть выведены не менее чем с 3 верными значащими цифрами.

Пример входного файла

5 1
0 0
0 5
4 5
2 3
5 0
3.0 1.0

Пример выходного файла

1
1 5 5.82843
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .