ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 102938

 [Путь на параллелепипеде ]
Тема:   [ Задачи в пространстве ]
Сложность: 4

На поверхности прямоугольного параллелепипеда { (x, y, z) | 0 ≤ x ≤ L, 0 ≤ y ≤ W, 0 ≤ z ≤ H } отмечены две точки с координатами (x1, y1, z1) и (x2, y2, z2). Существует много путей, проходящих по поверхности параллелепипеда и соединяющих заданные точки. Требуется найти квадрат длины кратчайшего из таких путей.

Входные данные

Файл входных данных содержит (в указанном порядке) следующие 9 целых чисел: L, W, H, x1, y1, z1, x2, y2, z2 . Числа разделяются пробелами и/или символами перевода строки. Каждое из чисел L, W, H не превышает 100.

Выходные данные

Вывести в выходной файл одно целое число – квадрат длины искомого пути.

Пример входного файла

3 4 4
1 2 4
3 2 1

Пример выходного файла

25
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .