ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 64609  (#6)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Существуют ли такие натуральные числа a, b, c, d, что  a/b + c/d = 1,  a/d + c/b = 2008?

Прислать комментарий     Решение

Задача 64610  (#7)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю AC, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями AC и BD?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .