ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 66607

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_1,\ldots,x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. Когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0\leqslant x_1\leqslant\ldots\leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .