Страница: 1 [Всего задач: 1]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_1,\ldots,x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. Когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0\leqslant x_1\leqslant\ldots\leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?
Страница: 1 [Всего задач: 1]