ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Тема: ЕГЭ >> Умения >> 3 >> 3.2
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 997]      



Задача 112386

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+5)8-8x на отрезке [-4,5;0] .
Прислать комментарий     Решение


Задача 112387

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+6)9-9x на отрезке [-5,5;0] .
Прислать комментарий     Решение


Задача 112388

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+4)5-5x на отрезке [-3,5;0] .
Прислать комментарий     Решение


Задача 112389

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+6)4-4x на отрезке [-5,5;0] .
Прислать комментарий     Решение


Задача 112390

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+5)3-3x на отрезке [-4,5;0] .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 997]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .