ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 2 >> [Всего задач: 7]
xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+j<аp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален.
а) 1 принадлежит А б) если k принадлежит А, то 2*k+1 принадлежит А и 3*k принадлежит А, и других чисел множество А не содержит. Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,...
Отъезжая со станции, поезд сначала разгоняется, потом некоторое (возможно нулевое) время движется с максимальной скоростью, затем замедляется и, в конце концов, останавливается на очередной станции. Поезда останавливаются на всех промежуточных станциях метрополитена. На каждой из станций поезда стоят одно и тоже фиксированное время. Поезда разгоняются и замедляются с одинаковым, постоянным ускорением. Поезда имеют одинаковую максимальную скорость. Поезда всегда разгоняются до максимальной скорости, если это не мешает остановиться на следующей станции. Иначе они разгоняются, пока это возможно, а затем сразу же начинают тормозить. Требуется определить, где и когда поезда столкнутся. «Где» определяется
расстоянием от начальной станции до места столкновения, «когда» –
временем, когда произойдет столкновение.
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|