ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 501]      



Задача 30738

Темы:   [ Правило произведения ]
[ Перебор случаев ]
[ Признаки делимости на 2 и 4 ]
Сложность: 2+
Классы: 6,7

Сколько различных четырёхзначных чисел, делящихся на 4, можно составить из цифр 1, 2, 3 и 4,
  а) если каждая цифра может встречаться только один раз?
  б) если каждая цифра может встречаться несколько раз?

Прислать комментарий     Решение

Задача 30744

Темы:   [ Правило произведения ]
[ Геометрическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8

Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?

Прислать комментарий     Решение

Задача 30748

Темы:   [ Сочетания и размещения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 2+
Классы: 7,8

Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами  (p, q).

Прислать комментарий     Решение

Задача 34862

Темы:   [ Сочетания и размещения ]
[ Теория графов (прочее) ]
Сложность: 2+
Классы: 8,9,10

В парламенте 30 депутатов. Каждые два из них либо дружат, либо враждуют, причём каждый дружит ровно с шестью другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют.

Прислать комментарий     Решение

Задача 34864

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 2+

Дан шестизначный номер телефона. Из скольких семизначных номеров его можно получить вычеркиванием одной цифры?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .