ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 41]      



Задача 67314

Темы:   [ Кубические многочлены ]
[ Теорема Безу. Разложение на множители ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4+
Классы: 9,10,11

Будем называть натуральное число $N$ сильно кубическим, если существует такой приведённый кубический многочлен $f(x)$ с целыми коэффициентами, что $f(f(f(N))) = 0$, а $f(N)$ и $f(f(N))$ не равны 0. Верно ли, что все числа, большие $20^{24}$, сильно кубические?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .