ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 278]      



Задача 32045

Темы:   [ Игры-шутки ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 5,6,7

Два гроссмейстера по очереди ставят на шахматную доску ладьи (за один ход – одну ладью) так, чтобы они не били друг друга. Тот, кто не сможет поставить ладью, проигрывает. Кто выиграет при правильной игре – первый или второй гроссмейстер?

Прислать комментарий     Решение

Задача 102964

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 5,6,7

Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?

Прислать комментарий     Решение

Задача 34863

Тема:   [ Симметричная стратегия ]
Сложность: 2+

Двое играют в следующую игру. Каждый игрок по очереди вычеркивает 9 чисел (по своему выбору) из последовательности 1,2,...,100,101. После одиннадцати таких вычеркиваний останутся 2 числа. Первому игроку присуждается столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй.
Прислать комментарий     Решение


Задача 35428

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 7,8,9

На доске написано число 1. Два игрока по очереди прибавляют любое число от 1 до 5 к числу на доске и записывают вместо него сумму. Выигрывает игрок, который первый запишет на доске число тридцать. Укажите выигрышную стратегию для второго игрока.
Прислать комментарий     Решение


Задача 35429

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 7,8,9

На столе лежат две стопки монет: в одной из них 30 монет, а в другой - 20. За ход разрешается взять любое количество монет из одной стопки. Проигрывает тот, кто не сможет сделать ход. Кто из игроков выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 278]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .