ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

Вниз   Решение


В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

ВверхВниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

ВверхВниз   Решение


Углы треугольника ABC связаны соотношением  3α + 2β = 180°. Докажите, что  a² + bc = c².

ВверхВниз   Решение


На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
  1) у каждого квадрата одна вершина лежит на границе круга;
  2) квадраты не пересекаются;
  3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]      



Задача 98696

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 5

В 10-этажном доме на первом этаже живет 1 человек, на втором — 2, на третьем — 3, на четвертом — 4, ... на десятом — 10. На каком этаже лифт останавливается чаще всего?
Прислать комментарий     Решение


Задача 102989

Темы:   [ Задачи-шутки ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В книжном шкафу стоят по порядку четыре тома собрания сочинений Астрид Линдгрен, по 200 страниц в каждом томе. Червячок, живущий в этом собрании прогрыз путь от первой страницы первого тома до последней страницы четвертого тома. Сколько страниц прогрыз червячок?
Прислать комментарий     Решение


Задача 104041

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 7,8

Домашнее задание. Прорежьте в тетрадном листе дырку такого размера, чтобы Вы сами могли в нее пролезть.
Прислать комментарий     Решение


Задача 35609

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

Имеются два кошелька и одна монета. Внутри первого кошелька одна монета, и внутри второго кошелька одна монета. Как такое может быть?
Прислать комментарий     Решение


Задача 104039

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 7,8,9

Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .