ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 268]      



Задача 87963

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
Сложность: 2+
Классы: 5,6,7,8

Крестьянину надо перевезти через речку волка, козу и капусту. Лодка вмещает одного человека, а с ним либо волка, либо козу, либо капусту. Если без присмотра оставить козу и волка, волк съест козу. Если без присмотра оставить капусту и козу, коза съест капусту. Как крестьянину перевезти свой груз через речку?
Прислать комментарий     Решение


Задача 87982

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 5,6,7

Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка – в 5 и 8 л. Попробуйте, пользуясь этими бочонками:
  а) разделить квас на две части – 3 и 9 л;
  б) разделить квас на две равные части.

Прислать комментарий     Решение

Задача 88131

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 5,6,7

Трое туристов должны перебраться с одного берега реки на другой. В их распоряжении старая лодка, которая может выдержать нагрузку всего в 100 кг. Вес одного из туристов 45 кг, второго  — 50 кг, третьего  — 80 кг. Как должны они действовать, чтобы перебраться на другой берег?
Прислать комментарий     Решение


Задача 98363

Темы:   [ Теория алгоритмов (прочее) ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 6,7,8

Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за  n – 1  ход можно собрать все шашки на одной клетке.

Прислать комментарий     Решение

Задача 31362

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8,9

Некто А загадал число от 1 до 15. Некто В задает вопросы на которые можно отвечать ``да" или ``нет". Может ли В отгадать число, задав a) 4 вопроса; б) 3 вопроса.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 268]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .