ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некоторой стране протянута сеть железных дорог. Требуется наладить сообщение между двумя различными городами A и B, пустив наибольшее возможное число поездов от A до B. Из-за конструктивных особенностей поездов, нарушений расписания и прочих объективных причин необходимо, чтобы никакие два поезда не проезжали через один город, за исключением, конечно, городов A и B. Входные данные В первой строке входного файла записаны целое число M – количество городов в стране (2 ≤ M ≤ 25) и номера городов A и B (города нумеруются числами от 1 до M). Далее перечислены все железные дороги страны, каждая из них задается парой номеров городов, которые она соединяет. Все дороги считаются одноколейными и ориентированными, то есть ведущими из первого города пары во второй, но не наоборот. Выходные данные Выведите в первую строку выходного файла целое число K – максимальное количество поездов, которые можно пустить из A в B. Далее выведите K маршрутов поездов, по одному в каждой строке. Каждый маршрут задается номерами городов, через которые проходят поезда в порядке следования от A до B. Пример входного файла 5 2 4 2 1 2 3 1 3 3 1 1 4 3 4 3 5 Пример выходного файла 2 2 1 4 2 3 4 Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Будем считать, что поверхность болота ровная, а веревка достаточно длинная и не может ни за что зацепиться либо запутаться. Иванушка должен, держа в руках конец этой веревки, проскакать по кочкам так, чтобы размотать царевну и вернуться на начальную кочку. Так как царевна очень изнежена, то она ни в какой момент времени не должна быть обмотана веревкой более десяти раз (иначе веревка поранит царевну). Требуется определить такой маршрут движения Иванушки, при котором за
его ноги зацепится минимально возможное количество водорослей.
В следующих N строках записана матрица N × N, составленная из
вещественных чисел. Число в i-й строке и j-м столбце этой матрицы означает
количество водорослей, цепляющихся за ноги Иванушки при прыжке с i-й
кочки на j-ю.
Входные данные В первой строке входного файла записано количество вершин графа N (1 ≤ N ≤ 25). Далее перечислены ребра графа, заданные номерами начальной и конечной вершин. Выходные данные Выведите в первую строку выходного файла число K – наименьшее количество путей, которыми можно покрыть все вершины графа. Далее выведите сами эти пути (по одному в каждой строке), задавая их номерами вершин в порядке посещения. Пример входного файла 4 1 2 1 3 2 3 2 4 Пример выходного файла 2 1 2 4 3
Входные данные В первой строке входного файла записаны числа M и N (0 ≤ M, N ≤ 100). Далее записаны высота и ширина каждого из M конвертов, затем – высота и ширина каждой из N открыток. Размеры конвертов и открыток являются натуральными числами, не превосходящими 32767, и разделяются пробелами и/или символами перевода строки. Выходные данные Выведите в выходной файл целое число K – максимальное количество открыток, которые можно разложить по конвертам. Далее выведите K пар целых чисел, означающих номер открытки и номер конверта, в который ее необходимо положить. Пример входного файла 4 4 3 3 141 282 282 141 200 100 3 1 140 280 141 282 201 1 Пример выходного файла 4 1 1 2 3 3 2 4 4
конечно, городов A и B. Входные данные В первой строке входного файла записаны целое число M – количество городов в стране (2 ≤ M ≤ 25) и номера городов A и B (города нумеруются числами от 1 до M). Далее перечислены все железные дороги страны, каждая из них задается парой номеров городов, которые она соединяет. Все дороги считаются одноколейными и ориентированными, то есть ведущими из первого города пары во второй, но не наоборот. Выходные данные Выведите в первую строку выходного файла целое число K – максимальное количество поездов, которые можно пустить из A в B. Далее выведите K маршрутов поездов, по одному в каждой строке. Каждый маршрут задается номерами городов, через которые проходят поезда в порядке следования от A до B. Пример входного файла 5 2 4 2 1 2 3 1 3 3 1 1 4 3 4 3 5 Пример выходного файла 2 2 1 4 2 3 4
1) либо Ю1 оценивает Д1 выше, чем Д2 , либо Д2 оценивает Ю2 выше, чем Ю1 ; 2) либо Ю2 оценивает Д2 выше, чем Д1 , либо Д1 оценивает Ю1 выше, чем Ю2. Напишите программу, которая по заданным оценкам находит некоторое устойчивое паросочетание. Входные данные Первая строка входного файла содержит целое число N (1 ≤ N ≤ 200). В строках с номерами от 2 до N+1 находятся наборы из N чисел, которыми юноши с номерами от 1 до N оценивают девушек. В строках с номерами от N+2 до 2N+1 находятся наборы из N чисел, которыми девушки оценивают юношей. Числа в наборах разделяются пробелами. Выходные данные В выходной файл выведите номера девушек, соответствующих юношам с номерами от 1 до N по порядку. Числа должны быть разделены пробелами и/или символами перевода строки. Пример входного файла 3 1 2 3 2 3 1 1 2 3 1 2 3 2 3 1 3 1 2 Пример выходного файла 3 2 1
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|