ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 187]      



Задача 110014

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

Прислать комментарий     Решение

Задача 116825

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Жуков Г.

Пусть C(n) – количество различных простых делителей числа n.
  а) Конечно или бесконечно число таких пар натуральных чисел  (a, b),  что  a ≠ b  и  C(a + b) = C(a) + C(b)?
  б) А если при этом дополнительно требуется, чтобы  C(a + b) > 1000?

Прислать комментарий     Решение

Задача 60555

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 9,10,11

Пусть представление числа n в двоичной системе выглядит следующим образом:   n = 2e1 + 2e2 +...+ 2er   (e1 > e2 > ... > er ≥ 0).
Докажите, что n! делится на 2n–r, но не делится на 2n–r+1.

Прислать комментарий     Решение

Задача 60558

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Треугольник Паскаля и бином Ньютона ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 8,9,10

Докажите, что число    (m, n ≥ 0)  целое.

Прислать комментарий     Решение

Задача 60559

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 9,10,11

Существует ли такое целое число r, что    является целым числом при любом n?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .