|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале (0, 1)? Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 4, а длина каждого бокового ребра AA1 , BB1 , CC1 , DD1 равна 6. Прямой круговой цилиндр расположен так, что его ось лежит в плоскости BB1D1D , а точки A1 , C1 , B1 и центр O квадрата ABCD лежат на боковой поверхности цилиндра. Найдите радиус цилиндра (найдите все решения). В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке. Стороны треугольника равны 1 и 2, а угол между ними равен 60o. Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите её радиус.
Дайте геометрическую интерпретацию следующих неравенств: Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон? В произвольном (выпуклом — прим. ред.) шестиугольнике соединены через одну середины сторон. Докажите, что точки пересечения медиан двух образовавшихся треугольников совпадают. Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 1. Длина каждого из боковых рёбер AA1 , BB1 , CC1 , DD1 равна Через точку пересечения медиан треугольника ABC проходит прямая, пересекающая стороны AB и AC. Расстояния от вершин B и C до этой прямой равны b и c соответственно. Найдите расстояние от вершины A до этой прямой. Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)
Медиана AM и высота CH равнобедренного треугольника ABC (AB = BC) пересекаются в точке K. Найдите площадь треугольника ABC, если CK = 5, KH = 1. Найдите наибольшее значение функции y = ln (x+3)2-2x на отрезке [-2,5;0] . |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 961]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 961] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|