Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1119]      



Задача 116792

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 5,6,7

Малыш и Карлсон вместе съели банку варенья. При этом Карлсон съел на 40% меньше ложек варенья, чем Малыш, но зато в его ложке помещалось на 150% варенья больше, чем в ложке Малыша. Какую часть банки варенья съел Карлсон?

Прислать комментарий     Решение

Задача 116814

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 9,10,11

В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.
Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.

Прислать комментарий     Решение

Задача 116821

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 8,9

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/20 всех экскурсий.

Прислать комментарий     Решение

Задача 116871

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его A) бьёт другого (обозначим его B), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" B свободна. Например, на рисунке фигура a бьёт фигуру b, но не бьёт ни одну из фигур c, d, e, f и g.

Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?

Прислать комментарий     Решение

Задача 116888

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.
Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.

Прислать комментарий     Решение

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1119]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .