|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов? На плоскости даны точки A и B. Найдите ГМТ M, для которых разность квадратов длин отрезков AM и BM постоянна. Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC . Докажите, что ½ (x² + y²) ≥ xy при любых x и y. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 200]
Докажите, что ½ (x² + y²) ≥ xy при любых x и y.
Докажите, что при a, b, c > 0 имеет место неравенство
Докажите, что при x ≥ 0 имеет место неравенство
Докажите, что
Докажите, что x + 1/x ≥ 2 при x > 0.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 200] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|