Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.

Вниз   Решение


Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

ВверхВниз   Решение


Известно, что  ax4 + bx³ + cx² + dx + e,  где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Доказать, что все числа a, b, c, d, e делятся на 7.

ВверхВниз   Решение


Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать, что если он обратно также поедет в трамвае, то он сможет уплатить за проезд без сдачи. (Примечание. Проезд в трамвае стоил 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)

ВверхВниз   Решение


На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.

ВверхВниз   Решение


В парламенте 30 депутатов. Каждые два из них либо дружат, либо враждуют, причём каждый дружит ровно с шестью другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 171]      



Задача 30748

Темы:   [ Сочетания и размещения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 2+
Классы: 7,8

Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами  (p, q).

Прислать комментарий     Решение

Задача 34862

Темы:   [ Сочетания и размещения ]
[ Теория графов (прочее) ]
Сложность: 2+
Классы: 8,9,10

В парламенте 30 депутатов. Каждые два из них либо дружат, либо враждуют, причём каждый дружит ровно с шестью другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют.

Прислать комментарий     Решение

Задача 60378

Тема:   [ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

Прислать комментарий     Решение

Задача 60382

Темы:   [ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Прислать комментарий     Решение

Задача 60385

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 8

У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .