ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 312]
Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если ∠AMB = α и AB = a.
Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2.
Найдите высоту прямоугольного треугольника, проведённую из вершины прямого угла, если гипотенуза равна 8, а один из острых углов равен 60o.
В равнобедренном прямоугольном треугольнике ABC на продолжении гипотенузы AB за точку B отложен отрезок BD, равный BC, и точка D соединена с C. Найдите стороны треугольника ADC, если катет BC = a.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 312] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|