Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?

Вниз   Решение


Дан тетраэдр AB С D , в котором AB = AC = 5 , AD = BC = 4 , BD = CD= 3 . Найдите DM , где M – точка пересечения медиан грани ABC .

ВверхВниз   Решение


Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.

ВверхВниз   Решение


Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 106]      



Задача 60811

Темы:   [ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9,10

Найдите все такие трёхзначные числа, которые в 12 раз больше суммы своих цифр.

Прислать комментарий     Решение

Задача 60812

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9.

Прислать комментарий     Решение

Задача 64793

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8

Учительница записала на доске два натуральных числа. Лёня умножил первое число на сумму цифр второго и получил 201320132013. Федя умножил второе число на сумму цифр первого и получил 201420142014. Не ошибся ли кто-то из ребят?
Прислать комментарий     Решение


Задача 66368

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

Игорь записал на каждой из трёх карточек по одной цифре, отличной от нуля. Катя составила из них все возможные трёхзначные числа. Может ли сумма этих чисел равняться 2018?

Прислать комментарий     Решение

Задача 78513

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 106]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .