ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Если a ≡ b (mod m) и c ≡ d (mod m), то ac ≡ bd (mod m). Пусть a и b – два положительных числа, и a < b. Определим две последовательности чисел {an} и {bn} формулами: a0 = a, b0 = b, an+1 = а) Докажите, что обе эти последовательности имеют общий предел. Этот предел называется арифметико-гармоническим средним чисел a и b. б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b. в) Пусть a = 1, b = k. Как последовательность {bn} связана с последовательностью {xn} из задачи 61299? Игорь записал на каждой из трёх карточек по одной цифре, отличной от нуля. Катя составила из них все возможные трёхзначные числа. Может ли сумма этих чисел равняться 2018? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 106]
Найдите все такие трёхзначные числа, которые в 12 раз больше суммы своих цифр.
Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9.
Учительница записала на доске два натуральных числа. Лёня умножил первое число на сумму цифр второго и получил 201320132013. Федя умножил второе число на сумму цифр первого и получил 201420142014. Не ошибся ли кто-то из ребят?
Игорь записал на каждой из трёх карточек по одной цифре, отличной от нуля. Катя составила из них все возможные трёхзначные числа. Может ли сумма этих чисел равняться 2018?
Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 106]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке