ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Существует ли бесконечная последовательность натуральных чисел, обладающая следующим свойством: ни одно из этих чисел не делится на другое, но среди каждых трёх чисел можно выбрать два, сумма которых делится на третье? б) Если нет, то как много чисел может быть в наборе, обладающем таким свойством? в) Решите ту же задачу при дополнительном условии: в набор разрешено включать только нечётные числа. Вот пример такого набора из четырёх чисел: 3, 5, 7, 107. Здесь среди трёх чисел 3, 5, 7 сумма 5 + 7 делится на 3; в тройке 5, 7, 107 сумма 107 + 5 делится на 7; в тройке 3, 7, 107 сумма 7 + 107 делится на 3; наконец, в тройке 3, 5, 107 сумма 3 + 107 делится на 5. |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 203]
Для каких натуральных n в выражении
±12±22±32±...±n2
можно так расставить знаки + и
-, что в результате получится 0?
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
На n карточках написаны с разных сторон числа — на 1-й: 0 и 1; на 2-й: 1 и 2; ...; на n-й: n - 1 и n. Один человек берёт из стопки несколько карточек и показывает второму одну сторону каждой из них. Затем берёт из стопки еще одну карточку и тоже показывает одну сторону. Указать все случаи, в которых второй может определить число, написанное на обороте последней показанной ему карточки.
Дана четвёрка ненулевых чисел a, b, c, d. Из неё получается новая ab, bc, cd, da по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка a, b, c, d, кроме случая, когда a = b = c = d = 1.
а) Существует ли бесконечная последовательность натуральных чисел, обладающая следующим свойством: ни одно из этих чисел не делится на другое, но среди каждых трёх чисел можно выбрать два, сумма которых делится на третье? б) Если нет, то как много чисел может быть в наборе, обладающем таким свойством? в) Решите ту же задачу при дополнительном условии: в набор разрешено включать только нечётные числа. Вот пример такого набора из четырёх чисел: 3, 5, 7, 107. Здесь среди трёх чисел 3, 5, 7 сумма 5 + 7 делится на 3; в тройке 5, 7, 107 сумма 107 + 5 делится на 7; в тройке 3, 7, 107 сумма 7 + 107 делится на 3; наконец, в тройке 3, 5, 107 сумма 3 + 107 делится на 5.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 203]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке