ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек? Решение |
Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1110]
Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек?
Автобусный маршрут содержит 14 остановок (считая две конечные). В автобусе
одновременно могут ехать не более 25 пассажиров. Доказать, что во время
поездки автобуса из одного конца в другой б) может оказаться, что пассажиры едут таким образом, что не существует десяти различных остановок A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, которые обладали бы аналогичными свойствами.
В турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший.
В таблице из n столбцов и 2n строк, в которых выписаны все возможные различные наборы из n чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
В круговом шахматном турнире каждый участник играет с каждым из остальных один раз. За выигрыш присуждается одно очко, за ничью – пол-очка, за проигрыш – ноль. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше проигравшего.
Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|