ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число A делится на 1, 2, 3, ..., 9. Доказать, что если 2A представлено в виде суммы натуральных чисел, меньших 10,  2A = a1 + a2 + ... + ak,  то из чисел a1, a2, ..., ak можно выбрать часть, сумма которых равна A.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62]      



Задача 88082

Темы:   [ Принцип Дирихле (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Раскладки и разбиения ]
[ Доказательство от противного ]
Сложность: 2
Классы: 5,6,7

Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?

Прислать комментарий     Решение

Задача 60399

Темы:   [ Правило произведения ]
[ Объединение, пересечение и разность множеств ]
[ Раскладки и разбиения ]
Сложность: 3-
Классы: 8,9

Имеется множество C, состоящее из n элементов. Сколькими способами можно выбрать в C два подмножества A и B так, чтобы
а) множества A и B не пересекались;
б) множество A содержалось бы в множестве B?

Прислать комментарий     Решение

Задача 35231

Темы:   [ Свойства коэффициентов многочлена ]
[ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 3+
Классы: 8,9,10

Вычислите коэффициент при x100 в многочлене  (1 + x + x2 + ... + x100)3  после приведения всех подобных членов.

Прислать комментарий     Решение

Задача 78234

Темы:   [ Принцип Дирихле ]
[ Процессы и операции ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 8,9,10

Число A делится на 1, 2, 3, ..., 9. Доказать, что если 2A представлено в виде суммы натуральных чисел, меньших 10,  2A = a1 + a2 + ... + ak,  то из чисел a1, a2, ..., ak можно выбрать часть, сумма которых равна A.

Прислать комментарий     Решение

Задача 66477

Темы:   [ Индукция (прочее) ]
[ Теория графов (прочее) ]
[ Раскладки и разбиения ]
Сложность: 5
Классы: 8,9,10,11

На олимпиаду пришло 2018 участников, некоторые из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то из них. Докажите, что можно рассадить всех участников олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .