ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из набора гирь весом 1, 2, ..., 26 выделить шесть гирь так, чтобы среди них не было выбрать двух кучек равного веса. Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством. Решение |
Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 737]
Дано n целых чисел a1 = 1, a2, a3, ..., an, причём ai ≤ ai+1 ≤ 2ai (i = 1, 2,..., n – 1) и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны?
Имеется 11 мешков монет. В 10 из них монеты настоящие, а в одном – все монеты фальшивые. Все настоящие монеты одного веса, все фальшивые монеты – также одного, но другого веса. Имеются весы, с помощью которых можно определить, какой из двух грузов тяжелее и на сколько. Двумя взвешиваниями определить, в каком мешке фальшивые монеты.
Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством.
Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве pn, где p – простое число, n = 0, 1, 2, 3, ... (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?
Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|